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A study of the Faraday instability of diffuse interfaces between pairs of miscible
liquids of different densities, by means of experiments and by a nonlinear numerical
model, is presented. The experimental set-up consisted of a rectangular cell in which
the lighter liquid was placed above the denser one. The cell in this initially stable
configuration was then subjected to vertical vibrations. The subsequent behaviour of
the ‘interface’ between the two liquids was observed with a high-speed camera. This
study shows that above a certain acceleration threshold an instability developed at
the interface. The amplitude of the instability grew during the experiments which
then led to the mixing of the liquids. The instability finally disappeared once the two
liquids were fully mixed over a volume, considerably larger than the initial diffuse
region. The results of a companion two-dimensional nonlinear numerical model that
employs a finite volume method show very good agreement with the experiments. A
physical explanation of the instability and the observations are advanced.

1. Introduction
The instability of a vibrating liquid layer with a free surface leads to Faraday waves.

The waves between phases of different densities are excited by inertial forces (see
Faraday 1831; Benjamin & Ursell 1954). Short wavelength disturbances are stabilized
by surface tension and by the dissipation of momentum via viscous relaxation while
they are destabilized by transverse variations in surface elevation which, in turn,
lead to transverse variation in inertial forces. These forces are excited by the external
vibrations. It is this competition between the stabilizing and destabilizing effects
that leads to the selection of patterns with finite wavelengths when a liquid with a
free surface is subject to vibrations. Since Faraday’s work, numerous studies have
been done on various aspects of vertical vibrations on liquid layers, films or drops.
These studies have led to a better understanding of fluid behaviour and consequently
have paved the way for new industrial processes. For instance, James et al. (2003)
and Zoueshtiagh et al. (2006) have shown novel methods for atomizing liquid drops
or air bubbles by bursting them using vibrations. By this means, the bubble or drop
generation and sizes can be better controlled. This in turn has potential application to
pharmaceutical production. Other work related to the current study is the parametric
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instability of a liquid–vapour interface close to the critical point where the surface
tension approaches zero (Fauve et al. 1992). In addition to this work are the studies
of instability due to mechanical vibrations in systems where low surface tension
arises from the addition of surfactants (Kumar & Matar 2004; Ubal, Giavedoni &
Saita 2005a , b; Ballesta & Manneville 2006).

Experiments on the Faraday instability in immiscible fluid layers have been
performed (Tipton & Mullin 2004) with a view of understanding interfacial
modulation on an acceleration-driven instability while offering confirmation of
established theories (Kumar & Tuckerman 1994). Now much of the earlier work has
centred on immiscible fluid layers and it is somewhat surprising that the analogous
problem for miscible layers has been less studied. The miscible fluid problem is
different from the usual Faraday instability described earlier as here we do not have
a clearly demarked interface with a companion interfacial tension. In the miscible
case there is the diffusion of momentum and species to stabilize the diffuse region
while in the immiscible system diffusion of momentum via the kinematic viscosity
and interfacial tension are the agents of stabilization. In the miscible fluid case there
are no distinct surface elevations or depressions that can cause inertial forcing from
external acceleration unlike the immiscible case. Instead the destabilization effect of
short wavelengths is thought to occur from the transverse variation of density. In
other words the destabilization of a diffuse interface in the presence of vibration is
akin to the Bénard instability where even an erstwhile quiescent layer that is stably
stratified can experience sustained flow when subjected to inertial vibrations (Shukla
& Narayanan 2002). In such a problem the larger the external acceleration the smaller
the wavelength at the onset of the instability.

The differences between Faraday instability in immiscible and miscible systems are
not restricted only to the nature of the interface, being singular in one case and diffuse
in the other, but also to the nature of the potential that drives the instability in the first
place. In an immiscible system it is enough to have a jump discontinuity in density at
the surface. In a miscible system one needs a gradient of density to drive the instability.
These density gradients can be caused by temperature or concentration fields. Once
the instability sets in, the gradients begin to weaken as a result of convective mixing.
This in turn causes the waves that characterize the secondary motion, to disappear.
In other words the miscible layer Faraday problem is necessarily transient and can
never attain a periodic steady state unlike its immiscible counterpart.

The current study is an attempt to provide experimental evidence for the Faraday
instability in miscible fluids. Experiments on several systems of miscible fluids will be
discussed and for each the principal input variables are the amplitude and frequency
of the imposed oscillation, while the output is the wavelength of the diffuse interface.
The variation of the wavelength with the time, after the miscible fluids first make
contact, as well as the mean viscosity of the fluids are discussed in addition to the
frequency of the response. Our observations are qualitatively compared with a two-
dimensional nonlinear model that is solved numerically. The transient nature of the
instability will be seen in the experiments and in the computations. We will also see
that the frequency of the response is half of the imposed frequency. For all of these
observations physical explanations are advanced. We now turn to the discussion of
the experiments and to the model.

2. The experimental set-up
The main idea behind the experiments is to determine the regimes for which a

pair of stably stratified miscible fluid layers subjected to vertical vibrations becomes
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Fluid Kinematic viscosity (m2 s−1) Specific gravity

Pure water 0.9 × 10−6 1.0
Salt saturated water 1.7 × 10−6 1.2 (Lide 2004)
1 cSt Silicone oil 1 × 10−6 0.826
2 cSt Silicone oil 2 × 10−6 0.87
5 cSt Silicone oil 5 × 10−6 0.92
10 cSt Silicone oil 10 × 10−6 0.93
50 cSt Silicone oil 50 × 10−6 0.96

Table 1. Physical properties of different fluids used in the experiments. The silicone oils are
completely miscible in one another. The same is true of brine and fresh water.
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Figure 1. Sketch of (a) the test cell and (b) the experimental set-up.

unstable. The instability is manifested by the onset of wavy motion with a definite
wavelength λ in the region of the diffuse interface. To this end an apparatus was
constructed wherein the heavier fluid was inserted first and the lighter fluid was
placed very gently above it. Two different systems of fluids were chosen, the first
being de-ionized water and salt-saturated water; the second, sets of two different
silicone oils of disparate densities. Their relevant properties are given in table 1.

The test cell depicted in figure 1(a) consisted of a Plexiglas cell of 8 × 4 × 2 cm3

which was filled until level 1 with the heavier of the two fluids. From level 1 to the
top, the cell was filled through the side hole 2 with the lighter of the two fluids.
Because of the density gradient between the two liquids at their interface, the latter
was easily observable with ordinary lighting. The cell was usually shaken 5 min after
the start of injection of the lighter fluid into the cell. This time corresponded to
the time necessary to slowly fill the cell without drastically perturbing the interface.
Air bubbles inside the cell were evacuated via the vent or ‘gas exiting hole’ at the
top of the cell (see figure 1a). This vent was blocked with a screw once the cell
was completely filled. The thickness of the diffuse interface region prior to shaking
was estimated to be of the order of millimetres. The motion of the interface was
observed by a high-speed camera at either 150, 200 or 250 images per second with
an exposure time of 250 μs. The recorded images were digitized and calibrated into
length scales from which the size of the instability (wavelengths) was measured. The
error in wavelength measurements was estimated to be about ±5 %.
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Figure 2. The geometry and the boundary conditions of the numerical problem.

The set-up providing the oscillations to the cell is shown in figure 1(b). It consisted
of a linear unit system connected to a SGMPH-04AA Fenwick servomotor. The
system converted the rotating motion of the drive pin into a linear movement
of the guide platforms 1 and 2. The test cell was attached to the lower sliding
plate, i.e. platform 1 while on platform 2 a counterweight of the cell was mounted.
The platforms were moved to the middle or apart simultaneously. This anti-
phase movement combined with the presence of the counterweight was aimed
at reducing the vibrations transmitted to the frame structure. The motion of the
drive was computer controlled and allowed oscillation amplitudes A in the range
0.75 � A � 10 cm, and frequencies f , f � 10 Hz. The accuracy of the amplitudes
and frequencies were held to within ±1 mm and ±1/60 Hz, respectively. The drive
motion, hence the movement of the unit, could provide sinusoidal motions at speeds
of up to 5 m s−1 and accelerations typically up to ≈ 35 m s−2.

To help understand the experimental results we now advance a simplified numerical
model with all of the essential physics. The aim of the calculations is to explain the
onset of the instability, the prediction of the wavelength evolution in time and the
occurrence of an observed period doubling behaviour in the ensuing motion.

3. The mathematical model
The experiment is modelled mathematically as a two-dimensional rectangular cavity

enclosing two fluids. It is depicted in figure 2. The height of the cavity is H , its width
is W and the entire container is subjected to vertical vibration with amplitude A and
frequency f . The lower fluid is the heavier one with the heavy species denoted by the
subscript ‘I ’. The fluid is assumed to be Newtonian and the density is taken to be
a function of the mass fraction of the species. Denoting ‘L’ as a length scale, to be
defined momentarily, the scaled equations are written as
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These equations are subject to the scaled boundary conditions given by

y = 0, U = 0, V = 0, w = 1,

y = H/L, U = 0, V = 0, w = 0,

x = 0, W/L, U = 0, V = 0,
∂w

∂x
= 0.

⎫⎪⎪⎬
⎪⎪⎭

(3.2)

In the above equations, V is the scaled velocity vector whose horizontal and vertical
components are denoted by U and V , respectively. Also in the above equations, the
scaled mixture density and mass fraction of the heavier species are correspondingly
denoted by ρ and w . The scale factor for the mixture density is the density of the heavy
species (brine say), denoted by ρI . The scaled mixture density ρ is then determined by
ρ = 1 + γ (w − 1) where γ =(ρI − ρII )/ρI with the density of the light species (pure
water say) being denoted by ρII .

To render the modelling equations in scaled form, requires us to define length, time
and velocity scales. The length scale ‘L’, left unspecified until now, is hereafter given
by

√
Dt0. The time scale is given by tref = L2/ν and the velocity scale by Uref = ν/L

where D and ν are the mass or solutal diffusivity and kinematic viscosity, respectively.
Observe that

√
Dt0 is a solutal diffusion length, where t0 is the initial experimental

wait time before the oscillations are imposed. In the experiments, t0 was typically
300 s and it is this value that is assumed in all of the computations in order to make
qualitative comparisons with the observations. This value of t0 yields a solutal diffusive
length of the order of about 1/2 mm, a small number in comparison with the cell
dimensions. Also observe that the characteristic time scale is essentially a viscous scale
even though the characteristic length scale is related to solutal diffusion. The reason
for this choice emanates from our view of the problem. The imposed oscillations
are time periodic mechanical inputs that can be dissipated by viscosity whereas the
instability finds its roots in transverse variations of concentration or density so that
all lengths including wavelengths seen at instability ought to reasonably scale with
the solutal diffusive distance.

The different dimensionless coefficients appearing in the above equations are
the following: Fr = Uref /

√
Lg (Froude number), Sc = ν/D (Schmidt number),

W0 = 2πf tref (Womersley number), Re = LUref /ν (Reynolds number) and

Frv = Uref /
√

LA(2πf )2 (vibration Froude number). We see that the scale factors
make the Reynolds number Re equal to unity. In other words viscous damping of
disturbances is never ignored in this model. Other dimensionless groups occurring in
the study are the Womersley number, which is a scaled frequency, and the ratio of
the two Froude numbers. The Womersley number provides a guide to the frequency
at which instability can be expected if the viscosity were increased. It provides
the penetration depth of the momentum boundary layer. The ratio of the Froude
numbers provides a guide to the amplitude that is needed in order to keep the
externally imposed acceleration invariant when the frequency is changed. An increase
in the vibrational Froude number is the principal reason for the instability; as such
an increase acts to enhance the inertial instability of a wave at the diffuse interface
in the face of a perturbation. The scaled equations will also give rise to a Schmidt
number. Its role is dual. Holding all other groups fixed, a small Schmidt number
indicates a large diffusion coefficient compared to the kinematic viscosity. This will
lead to the appearance of an instability early in time as a concentration gradient is
initially established, while a homogeneous concentration field will develop at longer
times. A large Schmidt number has the opposite effect.
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The domain equations are solved under the conditions that the top and bottom walls
are rigid, horizontal and maintained at constant concentration. While the last two
restrictions are not quite satisfied experimentally they are nonetheless approximately
true, as the characteristic diffusional lengths were much smaller than the vertical
dimension of the cell in our experiments.

Equations (3.1) and (3.2) are solved with a finite volume method using the
SIMPLER algorithm (Patankar 1980; Amiroudine et al. 1997) in a staggered
mesh. The space discretization uses the power-law scheme (Patankar 1980) and
time discretization is of the first-order Euler type. As the characteristic time t0 and
consequently the characteristic length, which is the diffusive length, are assumed to be
small the numerical calculations assume that the oscillations commence immediately
after the fluids make contact. The numerical code used here was bench marked
and tested against several problems such as the Bénard problem and problems with
compressible (perfect gases) or highly compressible (supercritical) fluids (Amiroudine
et al. 1997, 2001; Amiroudine & Zappoli 2003). The effect of the grid size was also
carefully tested for convergence. A non-uniform mesh is used in order to capture
the phenomena at the interface and near the walls. Observe that the vibrational
boundary layer thickness is of the order of δvib ≈

√
ν/πf ≈ 200 μm for a maximum

frequency of f = 8 Hz and kinematic viscosity of 1 cSt. Therefore, for all cases the
non-uniform mesh has 80 × 80 points and the first point of the mesh is at around
150 μm. An increase in mesh points did not change the results of the calculation
indicating that the vibrational boundary layer was well resolved by the numerical
scheme. The time step chosen is equal to 10−3 s, which is very small with respect to
all of the characteristic time scales.

4. A discussion of the numerical calculations and experimental observations
The calculations were done for two sets of fluids viz. (i) brine and pure water

with kinematic viscosity of ν ≈ 10−6 m2 s−1, solute diffusivity of D ≈ 10−9 m2 s−1 and
(ρI − ρII )/ρI = 0.16, (ii) silicone oils with ν ≈ 6.7 × 10−6 m2 s−1, D ≈ 10−9 m2 s−1 and
(ρI − ρII )/ρI =6.2 × 10−2. In the second case, we assumed the viscosities to be of the
same order for the two fluids even though they were quite different in the experiment.
This is permissible because the real cause of the instability is the difference in densities
as noted in § 1. The effect of mean viscosity on the wavelength of the instability will
be discussed later in the paper.

Figure 3 shows the time evolution of the density field for the water/brine case using
a vibration amplitude of 1 cm and a frequency of 8 Hz. At early times (t = 0.65 s), the
profile is purely diffusive which means that at very short times the instability cannot
establish itself since the dimension of the diffuse interface is extremely small. Since the
instability is, in principle, similar to the Bénard instability a short diffusion length can
only offer stabilization. As the oscillations continue in time, a wavy instability appears
at t = 0.82 s starting from the boundaries. Then at t =1.35 s, the whole interface is
unstable with a clear wavelength. But if the oscillations continue for a long time, the
density gradients become smeared on account of mixing; consequently the instability
disappears. Therefore, the instability is really one which appears over a transient
period.

To see whether the numerical observations are qualitatively similar to those made
in the experiments we consider several photographs of experimental runs (see also
attached movies 1 and 2 [available with the online version of this paper]). The
pictures depict results from the brine/water case. The oil/oil case was qualitatively
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Figure 3. Time evolution of the density field for the case of water–brine with a vibration of
an amplitude of 1 cm and a frequency of 8 Hz; (a) t = 0.65 s, (b) t = 0.82 s, (c) t = 1.35 s and
(d ) t = 3.42 s. The wavelength deduced from (c) is about 0.7 cm.

Figure 4. Photograph of the instability observed at the interface. Experimental parameters:
A = 1 cm, f = 8 Hz and waiting time t0 = 5 min. The measured wavelength in the picture is
about 0.6 cm.

very similar. Figure 4 shows a photograph of the instability developing with small
wavelengths. The experimental wavelengths in this figure are of comparable value
to those from the numerical calculations shown in figure 3. The amplitude and the
frequency of the imposed oscillations in this comparison are the same.

The set of photographs in figure 5, obtained here for A= 10 cm and f = 1.5 Hz,
shows the behaviour of the interface at different times (t = 0 refers to the beginning
of the shaking) during the experiment. In this figure one can see that the interface
between the two liquids was smooth and clear at the beginning of the shaking and
as time increased the instability developed and the interface became thicker because
of the mixing. At the end of the experiment the two liquids spread into each other
over the entire cell. Such large spreading was not always the case. For instance, at
small amplitudes the spreading was usually confined to near the centre of the cell.
This situation, which is comparable to a diffusion-thickened interface for large initial
waiting periods, could sometimes lead to the formation of another wavelength during



50 F. Zoueshtiagh, S. Amiroudine and R. Narayanan

(a) (b) (c)

(d ) (e) ( f )

Figure 5. Image sequence of interface evolution during an experiment; (a) t =0 s,
(b) t = 4.98 s, (c) t = 6.32 s, (d ) t = 6.74 s, (e) t = 6.98 s and (f ) t = 11.68 s. Experimental
parameters: A =10 cm, f = 1.5 Hz and t0 = 75min.

the same experiment but only at large t (see movie 2). Unfortunately, the memory
limitations of the camera did not allow further exploration of this phenomena.

Now each experiment was begun after a definite waiting period. This waiting
period was the time needed to fill the cell with the upper fluid after it first made
contact with the heavy fluid below it. The effect of this waiting period, called t0,
on the wavelength of the instability is of interest. Figure 6 shows a sequence of
images with a vibration of amplitude 10 cm and frequency of 1.5 Hz for different
waiting periods. A plot of the wavelength change with wait time for a few values of
acceleration is depicted in figure 7. As t0 is the characteristic time this plot is shown
unscaled. This figure should be viewed with some caution since long wait times,
greater than 75 min, would encourage the influence of the horizontal dimensions on
the wavelength due to the large diffusion lengths. The message of this plot is that
the wavelength decreased with increasing t0. This observation is reasonable as large
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(a) (b) (c)

Figure 6. Influence of the wait time t0 before the start of experiment on the developing
wavelength. Experimental parameters: A = 10 cm, f = 1.5 Hz (a) t0 = 5 min, (b) t0 = 20 min
and (c) t0 = 45 min.
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Figure 7. Wavelength as a function of wait time t0 before the start of the experiment.

waiting periods would lead to weaker initial concentration gradients and this in turn
would require sharper transverse density gradients to get the instability going. In
other words short wavelengths must come attendant with large wait times due to
weak driving potentials.

A curious observation that was made during the experiment was the appearance of
‘secondary waves’. These waves had the characteristic of being visible only when the
interfacial region would try and ‘flatten’ just before the cycle would reverse (see movie
1). The waves usually had small amplitudes and exhibited a larger frequency than
the Faraday waves. In figure 8 a photograph of such waves is shown in contrast to
their ‘mother’ Faraday waves displayed in figure 6(b). The appearance of secondary
or higher order waves is not a mystery. Secondary and higher harmonic waves are
to be expected before cycles reverse since incorporation of smaller wavelengths and
smaller amplitudes is how waves attain a means of ‘flatness’ during cycle reversing.

In addition to many of the earlier observations it is interesting to note that the
motion was associated with standing waves with an oscillation frequency f0, half
that of the cell frequency f , i.e. f0 = f/2. This important observation, seen both
experimentally as well as numerically, is further evidence that the problem can be
viewed as a classical Faraday problem. In this context it is noteworthy that the
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Figure 8. Observation of secondary wavelengths in the same oscillation but at different
position. Experimental parameters: A = 10 cm, f = 1.5 Hz and t0 = 20 min.
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problem is also similar to the instability seen when a fluid is heated from above
while subject to vertical oscillations. Such a problem has been shown (Shukla &
Narayanan 2002) to behave like a linear pendulum whose base plate oscillates where
subharmonic behaviour at resonance is an important characteristic (McLachlan 1947;
Nayfeh 1981).

In all of the experiments, the onset of the Faraday instability was studied by
fixing the oscillation amplitude A and gradually increasing the frequency f until the
formation of a wavelength at the interface. Figure 9 shows the resulting phase diagram
of the scaled frequency versus the scaled oscillation amplitude for the water/brine
system. The dashed line in this figure shows the experimental threshold above which
wavelengths could be observed at the interface and below which the interface remained
stable. The numerical simulations and experimental runs both show that above this
‘onset’ curve, the various cases were unstable while below it, they were stable.

The experiments in the oil/oil systems differed in two ways from those carried out
with brine and pure water. First, a higher acceleration and amplitude was required
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Figure 10. Wavelength as a function of the acceleration obtained experimentally and
numerically.

in order that the instability develop. For example, for the 5 cSt/50 cSt combination,
the miscible interface showed waviness for only oscillation amplitudes of A � 5 cm.
The second difference was that the instability lasted much longer in the case of the
oil/oil systems. Indeed, with viscous liquids, and in particular for the 5 cSt/50 cSt
combination, the instability could be observed for tens of seconds or sometimes for
more than 1 min without seeing liquid mixing whereas in the salt–saturated water
experiments the instability induced mixing very rapidly due to its lower viscosity.

The main results from the experiments for the case of silicone oils and brine/pure
water are summarized in figure 10 which shows the observed scaled wavelength as a
function of the scaled acceleration. Several observations are made from this figure.

First, the experimental data and numerical calculations are in good agreement
within the precision of the evaluation of the wavelength, especially for higher values
of the acceleration.
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Second, for lower values of the acceleration, the wavelength is large and for higher
values of the acceleration, the wavelength is small and saturates as the acceleration
increases. These observations follow from our earlier comments on the nature of the
instability and the fact that large accelerations come attendant with small wavelength
saturation. The deviation in the plots for the larger wavelengths is understandable
on account of the interference of the side walls and the consequent departure from a
clearly demarked wavenumber. To check the effect of side wall dimension, calculations
were also performed for a larger width of 8 cm with no discernible change seen in
the wavelengths at the onset of instability.

Third, the effect of viscosity on the developing wavelengths was of interest;
therefore several experiments were carried out using silicone oil combinations of
either 1 cSt/10 cSt, 2 cSt/10 cSt or 5 cSt/50 cSt. These particular combinations were
chosen for their relatively small density differences (see table 1). Despite this small
difference in density and the limitation in acceleration provided by our set-up, the
different oil combinations developed Faraday instabilities. The key result of these
experiments is that the wavelength at the onset of the instability always increased
with viscosity. This result also agreed with the computations as seen in the figure and
with the linearized stability results of Kumar and Tuckerman (1994) in the limit of
large viscosity.

Finally, a curve fit of all of the points, both experimental and numerical yields
the relation λ/(Dt0)

1/2 = B(Γ/g)b, where Γ =A(2πf )2 is the vibrational acceleration,
B ≈ 48 and b ≈ −1. This expression is similar to the form of the dispersion relation
obtained by Kumar & Tuckerman (1994). Now their study, unlike ours, dealt with
the linearized Faraday instability of immiscible layers. This agreement between both
studies is remarkable yet understandable since the root cause for the instability
is similar in both studies even though the causes for stabilization are somewhat
dissimilar. The agreement with the power law result of Kumar & Tuckerman (1994)
is another important feature of our work.

5. Summary
In our experimental and numerical study of the Faraday instability of miscible

interfaces several observations have been made. In the course of this a physical
explanation has been advanced which suggests that the observed instability derives
from an analogue of Faraday instability between miscible liquids and the stably
arranged oscillating Bénard problem. Instability in miscible systems is markedly
different than its immiscible counterpart on account of its transient nature as well
as the lack of a clear interface. The most important results which are discussed in
this study are four-fold. First, the observed threshold wavelength of the instability
decreased with an increase in external threshold acceleration for various miscible
fluid systems. Interestingly, this is in very good agreement with earlier published
theoretical results for studies on immiscible systems in which the interfaces, in
contrast with the present work, are well defined. Second, the observed frequency of
the pattern was half the imposed frequency, also in agreement with earlier results
on immiscible systems. Third, the wavelength of the onset patterns decreased as
the waiting period to commence the external oscillations increased. Finally, the
wavelength increased with the mean viscosity or in other words with the mean
Schmidt number of the miscible system.

The numerical model in the current work is limited to a two-dimensional study.
The experimental data were confined to runs where the proximity of the container’s
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vertical walls was of little concern. To investigate the effect of horizontal dimensions
would require both a three-dimensional numerical model as well as a re-configuration
of the experimental cell, neither of which is within the scope of this study. The current
work has however been able to delineate the physics of the Faraday instability in
miscible fluids and to explain its characteristics and the dependence of wavelengths
on system parameters.
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